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Abstract
Inflammatory mediators play important roles in the development and progression of cancer. Cellular stress, damage,
inflammation, and necrotic cell death cause release of endogenous damage-associated molecular pattern (DAMP)
molecules or alarmins, which alert the host of danger by triggering immune responses and activating repair mecha-
nisms through their interaction with pattern recognition receptors. Recent studies show that abnormal persistence of
these molecules in chronic inflammation and in tumor microenvironments underlies carcinogenesis and tumor pro-
gression, indicating that DAMP molecules and their receptors could provide novel targets for therapy. This review
focuses on the role of DAMP molecules high-mobility group box 1 and S100 proteins in inflammation, tumor growth,
and early metastatic events.
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Introduction
A century and a half ago, German physician and pathologist Rudolph
Virchow first reported that infectious diseases showed signs of a
“tumor process” and that inflammatory cells were frequently present
in tumor biopsies [1]. Noting similarities between wound healing
and tumor stromal generation, Harold Dvorak referred to tumors as
“wounds that do not heal” [2]. Although the association was largely
ignored for many years, increasing evidence linking inflammation
and tumorigenesis has triggered renewed interest in understanding
the molecular and cellular mechanisms involved in cancer-related in-
flammation. Emerging information points to two different pathways
linking the pathologies [3]: an extrinsic pathway mediated by chronic
inflammation that increases the risk of tumorigenesis (inflammation-
induced cancer) and an intrinsic pathway in which genetic alterations,
in the absence of an underlying inflammation, initiate a tumor-driven
host immune response leading to a tumor microenvironment com-
posed of inflammatory cells (cancer-induced inflammation).
Prolonged subclinical inflammation and associated necrotic cell death

also cause release of intracellular molecules that alert the immune sys-
tem to danger, evoking responses leading to epithelial regeneration,
angiogenesis, proliferation, and ultimately tumorigenesis. These events
resemble normal injury-related stromal reactions and wound healing
processes, which the tumor cells co-opt for growth, and further subvert
to counteract normal regulatory immune responses. Recent studies
show that these endogenous damage-associated molecular pattern
(DAMP) molecules or alarmins, released from necrotic cells and acti-
vated leukocytes, play critical roles in both extrinsic and intrinsic path-
ways of cancer-related inflammation. These studies prompt a paradigm
shift in understanding tumor development in adults as a pathological
sequence initiated by cycles of inflammation and necrotic cell death
[4,5]. In this review, we focus on the contribution of DAMP molecules
high-mobility group box 1 (HMGB1) and proinflammatory S100
proteins to inflammation and cancer.

Inflammation and Cancer

Inflammation-Induced Cancer
It is estimated that infections and chronic inflammatory responses

are involved in the pathogenesis of approximately 15% to 20% of
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human tumors, including gastric, colorectal, bladder, and liver cancers
[6–10]. Other causes of chronic inflammation, including mechanical,
physical, and chemical injury as well as dysregulated immune responses
to injury, also predispose to cancers [10,11]. Agents modulating in-
flammation, including aspirin and nonsteroidal anti-inflammatory
drugs, decrease the incidence of cancers [12–15], providing strong
evidence for the extrinsic pathway of inflammation-based cancers. In
addition, experimental animal models such as the 7,12-dimethyl
benz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/
TPA)–induced papillomas and azoxymethane/dextran sulfate sodium
(DSS)–induced colon cancers offer valuable insights into the initiation
and progression of inflammation-based cancers [16–19].

Inflammation is an immune response to infection and tissue injury,
characterized by the release of a complex regulatory network of media-
tors all aimed at combating the infectious or noxious agent, repairing
damaged tissue, and restoring homeostasis [20]. In chronic inflamma-
tion, this response is exaggerated or sustained. Long-term inflammation
is thought to lead to cancer because of the dysplastic degeneration
of repaired epithelium by the continuous release of reactive oxygen
and nitrogen species, which cause DNA damage resulting in genomic
instability and providing a proliferative advantage for cells carrying
mutations [21,22]. Recent evidence also indicate that chemokines and
proinflammatory cytokines such as tumor necrosis factor α (TNFα),
interleukin 6 (IL-6), and IL-23 play pleiotropic roles in tumor progres-
sion [23–28]. Transcription factors such as nuclear factor-κB (NF-κB)
and signal transducer and activator of transcription 3 (STAT3) are acti-
vated in many tumors and serve as important molecular links between
inflammation and cancer [29–31]. Nuclear factor-κB activation seems
to play a complex role because NF-κB inhibition also induces certain
tumors [32–34], and these contradictions have been incompletely
understood [35,36].

Cancer-Induced Inflammation
The intrinsic pathway of cancer-related inflammation is orches-

trated by the tumor itself without initiation by prior inflammation.
Epithelial cells transformed by activation of oncogenes, by inactivation
of tumor-suppressor genes, or by chromosomal rearrangement [37]
secrete factors that recruit inflammatory cells to the tumor enabling
the buildup of a microenvironment. The cancer cell coevolves with
its associated stroma, and the cellular composition, size of the stromal
component, and amplitude of response vary according to the tumor
type and other factors. The stromal cells include macrophages and other
myeloid cells, mast cells, endothelial cells, fibroblasts, dendritic cells,
natural killer cells, and T and B cells [38]. Depending on the compo-
sition of the cells in the microenvironment and stage of disease, tumor
stromal cells can stimulate or inhibit tumor growth. Tumor-associated
macrophages (TAMs) secrete cytokines, chemokines, lipid mediators,
growth and angiogenic factors, and matrix metalloproteinases that con-
tribute to tissue remodeling and angiogenesis and regulate the adhesion,
invasion, and motility of the tumor cells [6,39–43]. Lymphocytes may
play a dual role in tumor progression [42]. Cytotoxic T cells could
destroy tumor cells directly or through antibody-dependent killing.
Conversely, although CD4+ and CD8+ T cells are major components
of tumor microenvironments, they are largely ineffective in controlling
tumor growth owing to the presence of Tregs and myeloid-derived sup-
pressor cells (MDSCs) that are capable of suppressing T-cell prolifera-
tion. Myeloid-derived suppressor cells are a heterogeneous population
of immature myeloid cells, characterized by the expression of Gr-1,
CD11b, and IL4Rα [44–47]. They are normally present in low num-
bers in blood and lymphoid organs, but accumulate excessively in
tumors, blood, and lymphoid organs of tumor-bearing mice, and are
also found in various human cancers. Myeloid-derived suppressor cells
suppress activation of CD4+ and CD8+ T cells, inducing their anergy or
deletion, and promote the induction of Tregs, thus serving to blunt the
body’s immune responses to tumor antigens [48–50]. Immature den-
dritic cells (DCs) expressing HLA-DR accumulate in human tumors
and provide a mechanism for immune evasion through inefficient anti-
gen presentation [51,52]. Tumors also orchestrate other mechanisms to
escape immune surveillance of the host [38].

As discussed below,DAMPmolecules seem to play important roles in
both inflammation-induced cancer and cancer-induced inflammation.

Damage-Associated Molecular Pattern Molecules
About two decades ago, the late Charles Janeway proposed that

the immune system has evolved to protect the host, not against any
innocuous foreign antigen but against infectious pathogens, and pos-
tulated that receptors on antigen-presenting cells of the innate immune
system recognize pathogen-associated molecular pattern (PAMPs). It is
now well established that cells of the innate immune system sense
PAMPs through pattern recognition receptors (PRRs) such as Toll
and Toll-like receptors (TLRs), the NOD1-like receptors, mannose
receptor, and other scavenger receptors, and retinoic acid–inducible
gene-1–like receptors, stimulation of which initiates a range of host
defense mechanisms [53–59]. However, Janeway’s model did not ex-
plain why strong immune responses are elicited against tissue trans-
plants, ischemia-related injuries, tumors, and autoimmune diseases,
none of which involve microbial components. In 1994, Matzinger
[60] postulated that the immune system not only responds to pathogens
but also senses and responds to intracellular alarm signals arising from
nonphysiological cell death, damage, or stress. It is now known that
necrosis of healthy cells in response to inflammation, ischemia, or hyp-
oxia within tumors in fact releases endogenous molecules that alert the
immune system of danger [61,62]. In live cells, the preexisting danger
signals are hidden; apoptotic cells that are sequestered and cleared by
phagocytes do not release their intracellular contents unless there is
secondary necrosis while necrotic cells lose membrane integrity causing
release of intracellular contents. These endogenous danger signals are
called alarmins, and together with PAMPs that are microbial in origin,
they are referred to as DAMPs [63,64]. The so-called signal 0 events
initiated by DAMPs promote early innate and adaptive immune re-
sponses mediated through distinct receptors but interlinked to path-
ways orchestrated by cytokine, chemokine, and other inflammatory
mediators. This early response mediated byDAMPs is also called “sterile
inflammation” because it is initiated in response to trauma, ischemia,
and other tissue damage in the absence of pathogenic infection. The
sequence of immune responses to injury is so robust and stereotypical
that it is used by pathologists to date the time of tissue injury in autop-
sies. Recent studies suggest that radiotherapy and some chemother-
apeutic agents may cause preapoptotic and apoptotic changes on cell
surface of cancer cells with concomitant release of soluble mediators that
trigger DC activation and antitumor immune responses [65,66]. These
findings suggest that DAMP molecules could have both protumor and
antitumor effects [67].

Apart from their release from necrotic cells, several DAMP molecules
are also secreted from activated leukocytes in response to microbial
components or cytokines [63]. The molecules lack secretion signals
but they are actively secreted through by a nonclassical pathway. A
recent study shows that this noncanonical secretion is mediated by
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activated caspase-1, suggesting regulation by inflammasomes [68].
Hence, there are different mechanisms by which DAMP molecules are
released: 1) passive release from necrotic cells, 2) pulsatile release from
apoptotic cells in response to radio or chemotherapy, and 3) induced re-
lease from activated immune cells by a noncanonical pathway. Because
DAMP molecules promote the expression of cytokines, which in turn
induce expression of DAMPs, signaling events mediated byDAMPs pro-
vide for a feed-forward cycle of inflammatory, tissue repair, and regenera-
tion responses, which, when uncontrolled, may lead to carcinogenesis.
Endogenous DAMP molecules or alarmins include several intra-

cellular proteins, DNA, RNA, and nucleotides (reviewed in Rock
and Kono [61]). They are expressed in different cell types and func-
tion in normal cellular homeostasis. They are localized in the nucleus
and cytoplasm (HMGB1), cytoplasm (S100 proteins), exosomes (heat
shock proteins), and extracellular matrix (hyaluronic acid). On the basis
of their origin and mechanism of action, the proinflammatory DAMP
molecules can be classified as those that directly stimulate cells of
the innate immune system and those that generate DAMPs from other
extracellular molecules [61]. Here, we focus on two DAMP molecules
HMGB1 and proinflammatory S100 proteins. They are released extra-
cellularly by aforementioned processes, bind to PRRs, proteoglycans,
and carboxylated glycans, trigger immune responses, promote tissue
regeneration, and are implicated in inflammation and cancer.

High-Mobility Group Box 1
HMGB1 is a member of the nonhistone, chromatin-associated high-

mobility group family of proteins [69]. It is a highly conserved gene
expressed by all eukaryotic cells. During normal cellular homeostasis,
HMGB1 is localized predominantly to the nucleus. It binds to the
minor groove of DNA and facilitates the assembly of site-specific
DNA-binding transcriptional complexes [69]. Nuclear functions
of HMGB1 are essential to life because HMGB1 knockout mice die
within 24 hours of birth from hypoglycemia [70].

Extracellular Release of HMGB1. HMGB1 is passively released
by all cells upon necrotic cell death [71,72]. However, it can also be
secreted by macrophages and DCs by a nonclassic pathway in response
to lipopolysaccharide, interferon-γ, and TNFα [73,74]. Cytokine-
mediated releases of HMGB1 from pituicytes and enterocytes have
also been reported [75]. Lipopolysaccharide–mediated HMGB1 release
is regulated by its hyperacetylation [76], whereas TNFα-induced
secretion seems to be mediated through phosphorylation [77]. As
mentioned earlier, this active secretion is through leaderless, non–
Golgi-dependent pathways. Outside the cell, HMGB1 behaves as a cy-
tokine, promoting inflammatory responses [74]. Exciting new reports
show that HMGB1 secreted by apoptotic tumor cells after chemo-
therapy or radiation therapy promotes antitumor responses [65]. In
addition, apoptotic cells activate macrophages that engulf them to
secrete HMGB1 [78].

HMGB1 and Inflammation. HMGB1 released from necrotic
cells induces inflammation [71]. It induces DC maturation, migra-
tion, and T-cell activation [79–81]. Monocytes, T cells, and endothelial
cells release cytokines and inflammatory mediators in response to
HMGB1, all of which augment the local inflammatory environment
[79,80,82–86]. Administration of HMGB1 to mice significantly in-
creases serum TNFα levels [83]. Purified recombinant HMGB1 also
induces a delayed and biphasic release (3 and 8-10 hours after stim-
ulation) of TNFα, IL-1α, IL-1β, IL-6, IL-8, and macrophage inflam-
matory protein 1α and β from human monocytes at concentrations
within the pathological range observed in sepsis [83]. This effect is
restricted to monocytes because it does not release cytokines from lym-
phocytes. HMGB1 also induces TNFα, IL-1β, IL-6, and nitric oxide
production by murine macrophages through receptor for advanced gly-
cation end products (RAGE)–dependent signaling pathways [82] and
IL-6, monocyte chemoattractant protein 1, and thrombin-antithrombin
complex levels in peritoneal lavage fluid and plasma of mice through
TLR4 and RAGE-dependent mechanisms [87]. It has been suggested
that the HMGB1 polypeptide itself has a weak proinflammatory ac-
tivity and that binding to bacterial components including lipids may
strengthen its effects [84]. HMGB1 also acquires enhanced proinflam-
matory activity through binding to cytokines such as IL-1β [88]. Further-
more, HMGB1 promotes the expression of intercellular adhesion
molecule 1 and vascular cell adhesion molecule 1 on the surface of endo-
thelial cells [85,86]. It mediates hemorrhagic shock–induced NAD(P)H
oxidase activation and NF-κB–dependent gene expression in neutro-
phils [89,90]. HMGB1-DNA complexes promote maturation of im-
mune cells and production of cytokines [91,92] while suppressing
immune response in a few cell types [93].

Wang et al. [94] first described proinflammatory cytokine activity
of HMGB1, when they showed that HMGB1 was a late mediator
of endotoxin-mediated sepsis in mice. Since this seminal finding,
HMGB1 has been implicated in the pathogenesis of a variety of ster-
ile inflammatory conditions including rheumatoid arthritis [95–97],
lupus erythematosus, and Sjögren syndrome [98,99], trauma and
hemorrhagic shock [100–103], and ischemia-reperfusion injury of
the liver, heart, kidney, and brain [104–107], providing evidence
for its role as a danger signal. It was recently shown that HMGB1
released from late apoptotic cells remains bound to nucleosomes and
that HMGB1-nucleosome complexes activate antigen-presenting cells
and induce secretion of cytokines by macrophages and expression of
costimulatory molecules in DCs [108]. Because autoantibodies against
double-stranded DNA and nucleosomes are a characteristic of systemic
lupus erythematosus, HMGB1 bound to nucleosomes could therefore
contribute to the pathogenesis of systemic lupus erythematosus.

In addition to studies highlighting the proinflammatory effects of
HMGB1 in models of multiple diseases in vivo, there is emerging
evidence to suggest that HMGB1 participates in tissue repair and
remodeling, a role that is increasingly recognized as a characteristic of
damage-associated molecules. HMGB1 is proangiogenic [109,110]. It
induces migration of mesangioblasts [111,112], endothelial progenitor
cells [112], and myogenic cells [113] and chemotaxis and proliferation
of smooth muscle cells [114,115]. It stimulates myogenesis [116] and
promotes myoblast differentiation [117] and myocardial regeneration
after infarction [118]. It also promotes enhanced arteriole density,
granulation tissue deposition, and accelerated wound healing in dia-
betic skin [119].

HMGB1 and Cancer. HMGB1 is widely expressed in many tumor
cells and can be secreted by them or be released upon necrotic cell
death [120,121]. Its expression is high in migrating growth cones
and malignant cells [122]. It also binds tissue-type plasminogen acti-
vator and plasminogen, promoting plasmin production and hence
tissue invasion [123,124]. Given its effects in tissue repair, wound
healing, angiogenesis, and cell migration, HMGB1 could augment
tumor growth and metastasis. In fact, studies suggest that up-regulation
of HMGB1 is associated with a malignant phenotype of many can-
cers [125,126]. HMGB1 also mediates inflammation-based colon
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carcinogenesis [127]. HMGB1 is significantly elevated in serum and
colonic tissue during acute inflammation induced by DSS and anti-
HMGB1 treatment reduces severity and extent of inflammatory lesions
[127]. HMGB1 released by necrotic colon cells seems to affect sur-
rounding inflammatory cells such as macrophages inducing inflamma-
tory cytokine production and tissue repair. Apc/Min+ mice, in which
colon tumors were triggered by DSS-induced inflammation, also show
a significant decrease in tumor numbers within the colon when treated
with anti-HMGB1 [127]. Colon cancer–derived HMGB1 promotes
growth inhibition and apoptosis of macrophages [128] suggesting a role
forHMGB1 in the tumormicroenvironment. Thus, targetingHMGB1
production or release, or blocking its interaction with its receptors and
downstream signaling in macrophages, might have therapeutic applica-
tions in both inflammation and cancer [129]. However, as mentioned
earlier, recent studies show that pulsed acute release of HMGB1 occurs
after chemotherapy or radiotherapy [65], which promotes DC process-
ing of apoptotic cells, DC maturation, clonal expansion of tumor-
specific T cells, and antitumor immune response [66,130,131]. This
suggests that HMGB1, depending on the pulsatile release from apop-
totic tumor cells or chronic release from necrotic tumor cells, could
have a paradoxical dual effect on tumors [67].

S100 Proteins
S100 proteins are a family of more than 20 homologous intracellular

proteins characterized by calcium-binding EF hand motifs, low molec-
ular weights, ability to form homodimers and heterodimers and oligo-
mers, and tissue-specific expression [132–135]. Most of the S100 genes
are clustered at the chromosomal region 1q21, a region frequently re-
arranged in epithelial tumors and tumors of soft tissues [132,135,136].
They have two distinct EF hand calcium-binding domains connected
by a hinge region. The canonical C-terminal calcium binding EF hand
is common to all EF hand proteins, whereas the N-terminal EF hand
is characteristic of S100 proteins. Intracellular functions of S100 pro-
teins have been extensively studied. These include calcium homeostasis,
cell cycle regulation, cell growth and migration, cytoskeletal interac-
tions, protein phosphorylation, and regulation of transcriptional factors
among others [132–135].

Extracellular Functions of S100 Proteins. Extracellular functions
have been reported for a few S100 proteins. The most well studied
extracellular effects relate to the myeloid-specific S100 proteins,
namely, S100A8, S100A9, and S100A12 [133,137,138]. They are ex-
pressed predominantly in cells of myeloid origin. S100A8 and S100A9
are present in neutrophils, monocytes, and myeloid progenitors and
can be induced in keratinocytes during inflammation [136]. Expression
is downregulated during macrophage and DC differentiation [139–
141]. S100A12 expression is restricted to neutrophils and is not ex-
pressed in rodents [142,143]. Like other DAMPmolecules, the proteins
lack secretion signals required for classic Golgi-dependent transport
and are released by an energy-dependent and tubulin-dependent process,
which requires activation of protein kinase C [144]. When secreted into
the extracellular medium in response to cell damage or activation, they
become danger signals that activate other immune cells and endothelial
cells [138].

Multimeric forms of S100 proteins seem to be necessary for the
extracellular functions of S100 proteins [145,146]. Multimeric assem-
blies have been reported for S100A12, S100A4, and S100B. S100A8
and S100A9 function predominantly as S100A8/A9 heterodimers. Dis-
ruption of the S100A8 gene causes late embryonic lethality [147],
whereas S100A9 null mice do not exhibit an obvious phenotype. How-
ever, targeted deletion of S100A9 leads to a complete lack of S100A8
and a functional S100A8/A9 complex in peripheral blood cells and
cells of the bone marrow, despite normal mRNA levels of S100A8,
suggesting that S100A9 expression is important for the stability of the
S100A8 protein [148,149].

S100 Proteins and Inflammation. S100A8/A9 and S100A12 in-
duce prothrombotic and proinflammatory responses in endothelial
cells including induction of thrombospondin, chemokines, and adhe-
sion molecules and stimulate proinflammatory cytokine production
by macrophages [142,150–154]. Up-regulation of chemokines and
adhesion molecules helps to promote further recruitment of leukocytes
into inflamed tissues. S100A8/A9 and S100A12 are elevated early in tis-
sues and serum in many pathological conditions associated with inflam-
mation such as arthritis, inflammatory bowel disease, vasculitis, multiple
sclerosis, psoriasis, and cystic fibrosis and are considered suitable bio-
markers of inflammation [133,137,138].

S100A8/A9 and Cancer. It is becoming increasingly clear that
S100A8/A9 proteins are involved in many aspects of tumor growth
and metastasis. They are upregulated in many cancers including
lung, gastric, colorectal, prostate, breast, and pancreatic cancers
[136,155]. At low concentrations, S100A8/A9 promote tumor cell
growth [19,156]. Elevated levels of S100A8/A9 in chronic inflam-
mation and cancer suggest that the proteins play important roles
in inflammation-mediated carcinogenesis.

Recent studies show that S100A8/A9 regulate the accumulation of
MDSC in tumors [141,157]. S100A8 and S100A9 are downregulated
during normal differentiation of myeloid precursors to DC and macro-
phages [139–141]. However, tumor-derived factors promote sustained
up-regulation of S100A9 in myeloid precursors, which results in the
inhibition of differentiation to DC and accumulation of MDSC
[141]. These tumor-induced effects are not observed in cells from
S100A9 null mice, which show less accumulation of MDSC, higher
rate of tumor rejection, and lower tumor size than wild-type controls.
This study also shows that activated STAT3 upregulates the expression
of S100A8 and S100A9 in myeloid cells in vitro and in vivo. In a par-
allel study, we reported not only that S100A8/A9 are synthesized and
secreted byMDSC but also that they have binding sites for S100A8/A9
[157]. Part of the binding is mediated by carboxylated glycans and
by RAGE, leading to intracellular NF-κB signaling and MDSC migra-
tion. These findings strongly suggest that the S100A8/A9 proteins sup-
port an autocrine feedback loop that sustains accumulation of MDSC
in tumors, alongside IL-6, IL-1β, prostaglandin E2, and complement
components [158].

S100A8/A9 are also involved in early metastatic processes. Soluble
factors such as vascular endothelial growth factor, transforming growth
factor β, and TNFα expressed by primary tumors and/or TAMs induce
expression of S100A8 and S100A9 in myeloid and endothelial cells of
premetastatic lungs [159]. These changes in the local microenvironment
termed “premetastatic niche” represent early events in tumor dissemi-
nation and dictate the pattern of metastasic spread [160]. Expression
of S100A8/A9 in myeloid and endothelial cells in the lung promote
homing of tumor cells to these premetastatic niches [159]. If the tumor
cells encounter myeloid progenitors at the premetastatic sites, this could
promote an angiogenic switch necessary for metastatic cell survival.
These studies indicate that S100A8/A9 could be targeted to prevent
tumor metastasis. Other S100 proteins have also been implicated in
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cancers, including S100B, S100A4, S100A7, S100A11, and S100P, and
have been the subject of recent reviews [155,161].

Receptors That Detect Endogenous Danger Signals
It is becoming increasingly evident that intracellular mediators re-

leased upon necrotic cell death elicit inflammatory responses through
recognition by signaling receptors, similar to the recognition of PAMPs.
In fact, emerging evidence shows that some of the same PRRs that recog-
nize PAMPs may also mediate responses to endogenous danger signals.
By recognizing either pathogens or danger signals, PRRs seem to repre-
sent a commonpathway to alert the host of danger and to promote tissue
repair and regeneration.

Toll-like Receptors
Toll-like receptors or TLRs are a family of transmembrane receptors

that recognize microbial molecular patterns or PAMPs and enable cells
of the innate immune system to mount inflammatory responses against
pathogens [59,162]. Differentmicrobial moieties signal through different
TLRs. Lipopolysaccharide from gram-negative bacteria is recognized by
TLR4; double-stranded RNA activates TLR3; bacterial flagellin stimu-
lates TLR5. TLR1, TLR2, and TLR6 recognize bacterial peptidoglycans,
lipoproteins, lipoteichoic acids, lipoarabinomannan, and yeast zymosan;
TLR7 recognizes single-stranded RNA; unmethylated CpG motifs in
DNA are recognized by TLR9. Toll-like receptors that recognize viral
nucleic acids such as TLR3, TLR7, and TLR9 are localized in endoly-
sosomal compartments, whereas those that recognize bacterial protein
and lipid ligands are expressed on the cell surface. All TLRs except
TLR3 associate with myeloid differentiation factor 88 (MyD88), and
this stimulates a kinase cascade resulting in the activation of mitogen-
activated protein kinases (MAPKs), c-Jun N-terminal kinases, p38, and
extracellular signal–regulated kinases, and NF-κB [163,164].
In addition to PAMPs, TLR2 and TLR4 also recognize endogenous

danger signals [165,166]. HMGB1 binds to TLR2 and TLR4
[167,168]. The ability of HMGB1 to stimulate NF-κB activation
and cytokine production in macrophages and to promote neutrophil
recruitment in vivo in response to inflammation is dependent in part
on TLR signaling pathways [103,169–171]. HMGB1 released by
chemotherapy-induced cell death binds to TLR4 and induces anti-
tumor T-cell immunity [65]. HMGB1 bound to nucleosomes from
apoptotic cells induces anti-dsDNA and anti-histone immunoglobulin
G responses in a TLR2-dependent manner [108]. HMGB1-RAGE
interaction acts in a costimulatory manner for TLR9-mediated re-
sponses to DNA-containing immune complexes [91,92].
S100A8/A9 were recently shown to interact with TLR4, promoting

endotoxin-induced shock [172]. The ability of S100A8 and S100A9 to
promote premetastatic niches in lungs also requires TLR4-mediated
signaling [173]. They induce serum amyloid A (SAA3) expression in
premetastatic lungs, which attracts myeloid cells to the premetastatic
niches. SAA3 stimulates TLR4 activity and promotes NF-κB activation
[173]. S100A8/A9-SAA3-TLR4 paracrine cascade mediated through
NF-κB could therefore be involved in early pulmonary metastasis.
Ligation of TLRs lead to several host defense events that protect

the host from infection and damage induced injury [162,174]. TLRs
promote tissue repair and regeneration through their angiogenic and
antiapoptotic effects [64,174]. MyD88 is essential for the promotion
of diethylnitrosamine-induced hepatocellular tumors, spontaneous and
azoxymethane-induced intestinal tumorigenesis, and chemically induced
skin tumors [175–177]. TLR4 signaling also promotes colitis-induced
colon carcinogenesis [178]. Ligands involved in TLR-mediated tissue
regeneration and carcinogenesis are unknown. It is likely that TLRs
are activated by microbial entities in the gut and enterohepatic circula-
tion or by endogenous ligands such as HMGB1, S100A8/A9, or extra-
cellular matrix components released by necrotic cell death.

Receptor for Advanced Glycation End Products
RAGE, originally discovered as a receptor for advanced glycation

end products (AGE), is a multiligand receptor of the immunoglobulin
superfamily that plays a key role in immune and other signaling re-
sponses mediated by HMGB1 and many S100 proteins [161,179,
180]. RAGE also binds other structurally unrelated ligands such as
amyloid β peptide, transthyretin, and Mac-1 integrin. It is expressed
on monocytes, macrophages, T cells, DCs, smooth muscle cells, imma-
ture myofibers, endothelial cells, embryonal neuronal, and tumor cells.
Expression is high during embryonic development and low in healthy
adult tissues, except in the lung where it is constitutively expressed at
high levels [181]. RAGE is implicated in multiple pathologies including
diabetes, inflammation, neuronal degeneration, and cancers, primarily as
a receptor for DAMPs [161,182–184].

RAGE contains a single variable (V) domain containing two N-
glycosylation sites, followed by two constant (C1 and C2) domains,
a transmembrane segment and a short cytoplasmic tail necessary for
ligand-induced signal transduction [185]. Most ligands bind to the V
domain. Different RAGE splice variants exist and have recently been
classified as RAGE, RAGE_v1 to RAGE_v19 [186]. The prevalent
isoforms are full-length RAGE (RAGE), secreted RAGE that lacks
the cytoplasmic and transmembrane domain (sRAGE, RAGE-v1),
and N-terminal truncated RAGE (RAGE-v2). The relative expres-
sion of the isoforms is tissue-specific. RAGE-v1 or sRAGE is believed
to regulate full-length RAGE activation through its ability to bind li-
gands extracellularly.

HMGB1 and RAGE
RAGE was the first identified receptor for HMGB1 [187]. RAGE-

HMGB1 interactions mediate NF-κB–dependent production of
cytokines and up-regulation of cell surface receptors [171]. HMGB1
stimulates endothelial progenitor cell migration to ischemic and tumor
regions in a RAGE- and integrin-dependent manner [112] and RAGE
mediates the proangiogenic effects of HMGB1 [109]. Effects of
HMGB1 on mesangioblast homing, skeletal muscle regeneration, che-
motaxis of smooth muscle cells, and myogenesis are partly mediated
by RAGE [111,113,114,116]. RAGE-HMGB1 interactions also pro-
mote DC maturation, homing, and T-cell activation [79,80].

HMGB1-induced RAGE signaling also mediates embryonal neurite
outgrowth [187]. This finding, combined with expression of HMGB1
at the leading edges of motile cells and ability to bind tissue-type
plasminogen activator and plasminogen leading to the production of
plasmin [122,123,188], suggested that HMGB1-RAGE interactions
could promote tumor invasion and metastasis. In fact, overexpression
of HMGB1, along with RAGE, has been associated with proliferation
and metastasis of many tumors [120,124,128,189,190]. However, the
tumorigenic effects may be tissue- and cell-dependent because the ex-
pressions of RAGE and HMGB1 and their interaction have also been
shown to correlate negatively with tumor growth. For example, RAGE
is constitutively expressed in the lung, and down-regulation of RAGE
and HMGB1 is associated with increased aggressiveness of lung carci-
nomas [191]. RAGE-HMGB1 engagement also reduces tumor poten-
tial of rhabdomyosarcoma cells in vitro and in vivo, suggesting that
reduced RAGE signaling may contribute to rhabdomyosarcomagenesis
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[117,192]. In patients with esophageal and oral squamous cell carci-
nomas, reduced expression of RAGE negatively correlates with tumor
invasion and associated with better prognosis [193,194]. Soluble RAGE
and HMGB1 are expressed in tumors of cartilage. Whereas RAGE ex-
pression correlates positively with tumor grade and survival, HMGB1
expression does not, suggesting distinct functions of the soluble form of
RAGE and HMGB1 [195].

S100 Proteins and RAGE
S100B and S100A12 were the first of the S100 proteins shown to

initiate intracellular signaling through interaction with RAGE
[152,196]. Since then, a large number of S100 proteins have been
shown to bind to RAGE, and some of these promote inflammation
and cancer [145,146,155,161]. S100 proteins and RAGE are co-
expressed in a variety of human tumors [197]. Like many S100 and
DAMP proteins, S100B exhibits both intracellular and extracellular
functions [198]. Intracellular S100B stimulates cell proliferation and
migration and inhibits apoptosis and differentiation, whereas extracel-
lular S100B exerts regulatory effects on a relatively larger number of
cell types in an autocrine and paracrine manner through RAGE and
possibly other receptors [198]. S100B is also implicated in diabetes
and inflammation. S100B induces RAGE-dependent inflammatory
gene expression and oxidative burst in monocytes, macrophages, micro-
glia, and neurophils at high concentrations that could be relevant in
local inflammatory environments in both acute and chronic inflam-
mations [198]. S100B causes chemoattraction of RAGE-expressing
encephalitogenic CD4+ TH1 T cells in a model of experimental auto-
immune encephalomyelitis suggesting a role in the pathophysiology of
multiple sclerosis [199]. S100B promotes RAGE-dependent activa-
tion of NF-κB in endothelial cells, inducing expression of vascular cell
adhesion molecule 1, macrophage chemotactic protein 1, and RAGE
[200,201]. It also triggers signaling pathways in smooth muscle cells
in a RAGE-dependent manner, resulting in the up-regulation of macro-
phage chemotactic protein 1 and IL-6 [202]. Interaction of S100A7
or Psoriasin with RAGE mediates chemotaxis of leukocytes [203].
S100A8/A9 are upregulated inmany inflammatory diseases, and RAGE
and S100A8/A9 are coexpressed in tumors [156,204,205] and are
linked to downstream signaling in tumor cells and endothelial cells
[153,156,204]. Recent studies provide a more direct evidence of the
interaction of S100A8/A9 to RAGE [19,156,206]. At low concentra-
tions, S100A8/A9–induced NF-κB activation promote the growth of
tumor cells. This effect is blocked by RAGE gene silencing or by treat-
ment with anti-RAGE [156]. S100A8/A9 also promote LPS-induced
cardiac myocyte dysfunction and RAGE coimmunoprecipitates with
S100A8 and S100A9 suggesting a direct role for RAGE in S100A8/
A9–mediated effects in cardiac myocytes [206]. More recently, we
showed that S100A8/A9 binds to a subpopulation of RAGE modified
by carboxylated glycans [19] suggesting a direct interaction between the
proteins. S100A11 has been shown to modulate osteoarthritis through
interaction with RAGE [207]. S100A12-mediated RAGE activation
has been implicated in colon inflammation [152]. Functional inter-
actions of RAGE and S100P in pancreatic and colon cancer cells have
been demonstrated [208,209].

As mentioned above, most RAGE ligands, including AGEs,
HMGB1, S100 proteins, and amyloid β peptide, are highly elevated
in inflammatory foci, and RAGE-dependent inflammation promotes
up-regulation of both ligands and receptor leading to a feed-forward
signaling [182,210], amplifying the inflammatory environment that
would promote tumorigenesis. In support of this, recent studies indicate
a role for RAGE in inflammation-induced carcinogenesis. RAGE null
mice are resistant to the onset of DMBA/TPA–induced skin carcino-
genesis and azoxymethane/DSS–induced colon carcinogenesis [18,19].
In both these models, S100A8/A9 are strongly upregulated in stromal
cells within the tumors. RAGE−/− mice show reduced levels of MDSC
in the DMBA/TPA–induced skin carcinogenesis, implicating RAGE
in S100A8/A9–induced MDSC recruitment [18].

Other Cell Surface Binding Sites for DAMP Molecules
DAMP molecules HMGB1, S100A8/A9, and S100A12 bind to a

novel modification of N-glycans called carboxylated glycans, which are
expressed on RAGE and other glycoproteins [211,212]. HMGB1 binds
heparan sulfate proteoglycans, heparin, syndecan, and phosphocan
[122,213]. S100A8/A9 also bind to heparan sulfate proteoglycans [214].
Signaling Pathways Activated by DAMP
Ligation Converge on NF-κB

RAGE ligation by DAMPs leads to the activation of signaling path-
ways (Erk1/2 MAPKs, Cdc42/Rac SAP/JNK, and p38 MAPKs) im-
plicated in cell proliferation and cell migration [124,152,215,216].
Toll-like receptors can signal through MyD88, IL-1 receptor–associated
kinase, TNF receptor–associated factor, Akt, Cdc42/Rac, phosphatidyl
inositol-3 kinase, and MAPKs [163,167,172,217]. Signaling pathways
activated by DAMP ligation of the PRRs result in activation of NF-κB
[218,219], which further promotes the expression of proinflammatory
cytokines, chemokines, angiogenic factors, adhesion molecules, nitric
oxide synthase, matrix metalloproteases, and antiapoptotic genes [29].
Chronic NF-κB activation and subsequent inflammation, angiogenesis,
tissue repair, and regeneration could therefore lead to tumor devel-
opment. In fact, specific inactivation of the classic NF-κB activation
pathway in epithelial cells and macrophages reduces the formation of
inflammation-associated colonic tumors in mice, suggesting that sus-
tained NF-κB activation in either or both of these cells may provide a
critical link between inflammation and cancer [17,29]. TNFα-induced
NF-κB activation also promotes hepatitis-associated carcinoma in Mdr2
null mice [30].
Relative Importance of the Different Receptors
and DAMP Molecules in Inflammation and
Cancer, and Binding Specificities

PRRs represent a limited number of proteins by which cells recog-
nize microbial entities and endogenous danger signals and orchestrate
an immune response. However, the relative importance and contribu-
tion of the different DAMP molecules and of RAGE, TLRs, and other
receptors in mediating inflammation and cancer are not completely
understood and are likely to differ between cell types. If we learn more
about the specificity of these interactions, we can also determine tar-
gets for inhibition. Binding specificity may be imparted by interactions
of different domains on the ligands and receptors. The epitopes on
DAMPs recognized by RAGE might be different from those recog-
nized by TLRs. HMGB1 may interact with distinct receptors through
its DNA-binding boxes or through the C-terminal domain. For exam-
ple, amino acids 150 to 183 of HMGB1 interact with RAGE [220].
Similarly, distinct epitopes on RAGE and TLRs recognized by the
ligands may also impart specificity. For example, it is becoming in-
creasingly clear that different S100 proteins require different domains
on RAGE for binding. S100A12 binds to V-C1 domains, S100B re-
quires the V domain of RAGE and S100A6 interacts with V-C2 domain
[221–224]. Posttranslational modifications such as glycosylation on the
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receptors, acetylation, or phosphorylation of ligands and formation of
multimolecular assemblies as with S100 proteins could also play impor-
tant roles in defining specificity of interactions and downstream signaling.
Our studies suggest that N-glycan modifications of RAGE may

serve as unique ligand binding sites and may contribute to some
of the pleiotropic binding ability of the receptor. RAGE has two
N-glycosylation sites on the ligand binding V domain and both sites
are occupied by complex and hybrid N-glycans. Our recent analysis
of N-glycans on sRAGE suggests considerable heterogeneity of
glycan structures on RAGE (Houliston et al., unpublished data). Several
years ago, we identified a novel group of anionic N-glycans that contain
an immunogenic carboxylate group unrelated to sialic or uronic acids
[225]. These carboxylated glycans contain glutamic or aspartic acids
[226]. Using a monoclonal antibody against the glycans (mAbGB3.1),
we found that the glycans show restricted expression on mouse and
human cells of myeloid lineage including monocytes, macrophages,
Figure 1. Damage-associated molecular pattern molecules in inflamm
cellular danger signals such as HMGB1 and S100A8/A9 released from
bind to TLRs or RAGE and promote NF-κB signaling and expression of c
functioning through their respective receptors (generic representation fo
expression of adhesion molecules and cytokine production by local vas
HMGB1 also promotes RAGE- and TLR-dependent smooth muscle an
factor-κB–dependent proinflammatory cytokines in turn upregulate the
inflammation, necrosis, and tumorigenesis.
and DCs and on endothelial cells [227,228]. They are absent or un-
detectable on normal epithelial cells. However, they are expressed on
several tumor cells [19]. To identify glycan-binding proteins, we applied
whole bovine lung homogenates through a column of carboxylated
glycans and found that DAMP molecules HMGB1, S100A8/A9, and
annexin I specifically bound to the column [211,212]. We found that
a subpopulation of RAGEmolecules is modified by carboxylated glycans
[19,212] and that binding of HMGB1 to RAGE partially depends
on carboxylated glycans [212]. The subpopulation of RAGE enriched
for carboxylated glycans by mAbGB3.1 also showed 10- to 100-fold in-
crease in binding potential (Bmax/K d) for both S100A8/A9 and S100A12,
suggesting that carboxylated glycans form critical binding sites for these
ligands on RAGE. Conversely, based on our recent unpublished findings,
S100A11, S100B, and S100A1 as well as AGE do not show enhanced
binding to mAbGB3.1-enriched RAGE, suggesting that, although many
S100 family members bind RAGE, they may bind to different structural
ation. Inflammation can be initiated by microbial PAMPs or by intra-
necrotic cells or secreted from monocytes. HMGB1 and S100A8/A9
ytokines that act as growth factors for tissue repair and regeneration
r cytokine receptor(s) shownhere). HMGB1andS100A8/A9promote
cular endothelium, which further attract neutrophils and monocytes.
d mesangioblast migration, angiogenesis, and tissue repair. Nuclear
expression of DAMPs and RAGE, leading to a pathological cycle of



Figure 2. Damage-associated molecular pattern molecules in the tumor microenvironment. HMGB1 has a dual effect on tumors. Acute
release of HMGB1 after antitumor treatments promotes maturation of DCs through interaction with TLR4 and clonal expansion of tumor
antigen–specific T cells and antitumor responses. Conversely, persistent hypoxia in growing tumors leads to necrosis, causing chronic
release of HMGB1, which activates protumor responses promoting angiogenesis and tumor growth through the recruitment of macro-
phages (TAM) and endothelial precursor cells (EPC) and activation of local endothelial cells through RAGE signaling. In the bone marrow,
S100A8/A9 are downregulated during normal differentiation of myeloid precursors to DC and macrophages. However, tumor-derived
factors promote sustained up-regulation of S100A9 in myeloid precursors through a STAT3 dependent process, which results in the
inhibition ofDCdifferentiation and accumulation ofMDSC. S100A8/A9are synthesized and secretedbyMDSCandbind carboxylatedglycans
on other MDSC. This promotesmigration and accumulation ofMDSC in blood and peripheral lymphoid organs, possibly through RAGE- and
NF-κB–dependent pathways, thereby establishing an autocrine feedback loop that maintainsMDSC levels and promoting immune suppres-
sion against tumors. S100A8/A9 promote tumor growth through RAGE- and carboxylated glycan–dependent pathways. Tumor-derived
factors also induce expression of S100A8/A9 in myeloid and endothelial cells in premetastatic niches within lungs, which promotes homing
of tumor cells to lungs.
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domains or regions on the receptor, some involving carboxylated
N-glycans on the V domain and others not, thus providing differential
binding specificity. In support of this, we found that the mAbGB3.1-
enriched population of RAGE forms higher-order complexes of
S100A12 and that deglycosylation of RAGE reduced the ability to form
multimeric complexes.

As further evidence of the importance of carboxylated glycans in
mediating DAMP interactions, we found that inhibiting carboxylated
glycan-dependent interactions of DAMP molecules using mAbGB3.1,
blocked onset of T-cell–mediated colitis [228], colitis-dependent colon
cancer [19], and recruitment of MDSC to secondary lymphoid organs
and accumulation of MDSC in blood [157]. Proteomic analysis (Mud-
PIT) of mAbGB3.1-immunoprecipitated proteins from macrophages
revealed the presence of RAGE among other glycoproteins, but not
TLR2 or TLR4, suggesting that this modification may not be present
on all PRRs (Srikrishna et al., unpublished data). Our studies on colitis-
associated carcinogenesis also show that S100A8/A9 and HMGB1
could participate in distinct events in disease progression through dif-
ferent receptors [19]: an acute inflammation phase involving TLR4 and
a tumorigenesis and progression phase involving the glycans and RAGE
expressed on tumor cells because mAbGB3.1 does not block early DSS-
mediated colitis but blocks chronic inflammation and carcinogenesis.
In addition, RAGE−/− mice are as susceptible to early DSS-induced
injury as RAGE+/+ mice but are resistant to colitis-mediated cancer.

Current structural studies on RAGE are performed on the extracel-
lular domains (VC1C2) that comprise soluble sRAGE but are often
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produced by expression systems (bacteria, insect cells, or yeast) that
lack the complex glycosylation machinery of the mammalian systems.
Structural and ligand-binding analysis is typically done on single
or on tandem domains [221]. Nuclear magnetic resonance analysis of
expressed VC1 domains show that they form an integrated structural
unit that binds to Ca2+-S100B [223]. One of the critical residues in
the interactive face (Thr27) is part of the unoccupied N-glycosylation
sequon; the presence of a normal glycan chain on a native RAGE pro-
tein on cells would likely alter this interaction. S100A12 is shown to
bind to the C1 domain of RAGE [221]; however, the protein used in this
study has no N-glycans because it was expressed in Escherichia coli. On
the basis of our findings, it is likely that both V and C1 domains are
necessary for binding to S100A12. AGEs bind to the V domain [229],
whereas S100A6 binds to the C1C2 domains [222]. K d estimates for
S100 ligands range from 5 to 500 nM depending on the analytical
methods, specific ligands, and conditions. All studies concur that
RAGE-ligand binding generates multimeric complexes of both RAGE
(tetramer) and ligands (tetramer, hexamer, octomer) and that forma-
tion of these higher-order complexes may be essential for signal trans-
duction [145, 224,230]. The efficiency of complex formation varies
widely, sometimes requiring extremely high concentrations of protein
(500 mM) and involving only a few percent of the molecules. It is un-
clear whether the in vitro conditions mimic the formation of signaling-
competent RAGE-ligand multimers on a cell surface. Glycans are often
regarded as impediments in high-resolution protein structural analysis,
but their role in formation of signaling complexes is now well docu-
mented [231,232]. Studies on glycan-deficient RAGE, therefore, may
not accurately reflect the appropriate in vitro or in vivo ligand binding,
domain interactions, complex formation, or details of the signaling
pathways. Detailed binding studies using fully glycosylated RAGE pro-
tein are therefore necessary.
Figures 1 and 2 provide a representation of the current findings

on the role of DAMP molecules and PRRs in mediating inflamma-
tion and cancer.

Conclusions and Future Perspectives
Recent studies show that chronic inflammation and necrotic cell

death contribute to tumorigenesis. These studies provide novel insights
into the functional role of danger signals such as HMGB1 and S100
proteins released during necrotic cell death and inflammation and the
receptors that detect them such as TLRs and RAGE in mediating the
pathology. Signaling responses mediated by DAMP molecules include
production of cytokines and chemokines, recruitment of leukocytes
such as MDSC and associated immune suppression, neoangiogenesis,
stromagenesis, and epithelial proliferation. These represent homeo-
static tissue repair and remodeling responses and have implications
for carcinogenesis when chronic inflammatory states and necrotic cell
death lead to uncontrolled responses. Studies suggest therapeutic strat-
egies based on blocking the interactions of DAMP molecules and their
receptors or downstream signaling pathways. These include administra-
tion of sRAGE, antibodies to RAGE, TLRs, HMGB1, S100 proteins,
or carboxylated glycans, and inhibitors of MAPK pathways, NF-κB,
and other signaling mediators. Recent studies suggest that pulsed release
of HMGB1 after chemotherapy and radiotherapy in fact triggers anti-
tumor immune responses. Further studies are therefore clearly needed
to define which set of intracellular molecules constitute danger signals,
understand specificity of interactions, whether early and late events
are driven by different PRRs, what controlled stimuli could promote
apoptosis and antitumor responses, and if inflammatory response to
tissue injury can be selectively inhibited without affecting normal host
defense mechanisms.
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